Certain Inequalities Involving Generalized Erdélyi-Kober Fractional q-Integral Operators
نویسندگان
چکیده
In recent years, a remarkably large number of inequalities involving the fractional q-integral operators have been investigated in the literature by many authors. Here, we aim to present some new fractional integral inequalities involving generalized Erdélyi-Kober fractional q-integral operator due to Gaulué, whose special cases are shown to yield corresponding inequalities associated with Kober type fractional q-integral operators. The cases of synchronous functions as well as of functions bounded by integrable functions are considered.
منابع مشابه
Certain Fractional Integral Formulas Involving the Product of Generalized Bessel Functions
We apply generalized operators of fractional integration involving Appell's function F 3(·) due to Marichev-Saigo-Maeda, to the product of the generalized Bessel function of the first kind due to Baricz. The results are expressed in terms of the multivariable generalized Lauricella functions. Corresponding assertions in terms of Saigo, Erdélyi-Kober, Riemann-Liouville, and Weyl type of fraction...
متن کاملFractional Integration and Differentiation of the Generalized Mathieu Series
We aim to present some formulas for the Saigo hypergeometric fractional integral and differential operators involving the generalized Mathieu series Sμ(r), which are expressed in terms of the Hadamard product of the generalized Mathieu series Sμ(r) and the Fox–Wright function pΨq(z). Corresponding assertions for the classical Riemann–Liouville and Erdélyi–Kober fractional integral and different...
متن کاملOn certain fractional calculus operators involving generalized Mittag-Leffler function
The object of this paper is to establish certain generalized fractional integration and differentiation involving generalized Mittag-Leffler function defined by Salim and Faraj [25]. The considered generalized fractional calculus operators contain the Appell's function $F_3$ [2, p.224] as kernel and are introduced by Saigo and Maeda [23]. The Marichev-Saigo-Maeda fractional calculus operators a...
متن کاملA generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions
Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.
متن کاملOn Certain Operational Formula for Multivariable Basic Hypergeometric Functions
In the present paper certain operational formulae involving RiemannLiouville and Kober fractional q-integral operators for an analytic function are derived. The usefulness of the main results are exhibited by considering some examples which also yield q-extensions of some known results for ordinary hypergeometric functions of one and more variables.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014